Monadic Scalar Functions

As stated in the introduction, the term integer is used in this manual to indicate not only a domain of values but also a particular internal representation. To refer to the same domain of values when both integer and floating-point representations are allowed, the term restricted whole number is used. These floating-point representations need only be tolerably equal to the integers.

Classification of Monadic Scalar Functions

Although they are listed alphabetically in this chapter, for convenient reference, the A+ monadic scalar primitive functions can be grouped - among other ways, to be sure - in four categories:

Application and Result Shape

All monadic scalar functions produce scalars from scalars, and apply element by element to their arguments: they are applied to each element independently of the others. Consequently, the shape of the result is the same as the shape of the argument. This behavior is assumed in the following descriptions.

Error Reports

Multiple errors elicit but a single report. With only one exception, the error reports for monadic primitive scalar functions are common to all such functions. There are six reports, including interrupt, and each error report on the following list is issued only if none of the preceding ones apply:

An inadvertent left argument results not in a valence error, but in the invocation of a dyadic function that shares the function symbol.

Function Definitions

Absolute value |x

   Argument and Result
The argument and result are simple numeric arrays. The result for an integer argument is integer if possible.

   Definition
The absolute value of x. In other words, |x is equivalent to x times Sign of x.

   Example
     |12.3 3
 12.3 3

Ceiling x

   Argument and Result
The argument and result are simple numeric arrays. The result consists of nonfractional numbers, and is integer if all its elements can be represented that way (including if empty). If some element of the result has too great a magnitude to be represented as an integer, the result is floating point.

   Dependency
Comparison tolerance, for most floating-point numbers (see "Comparison Tolerance").

   Definition
The smallest nonfractional number greater than x or tolerably equal to x, except that x is 0 when x exceeds zero but is equal to or less than 1e-13 (intolerantly).

   Example
     10 10.2 10.5 10.98 9 9.2 9.5 9.98, 10+1e-13
 10 11 11 11 9 9 9 9 10

Exponential *x

   Argument and Result
The argument and result are simple numeric arrays. The result is always floating point.

   Definition
e (2.71828...) to the power x.

   Example
     *1 0 1 2 710
 .3678794412 1 2.718281828 7.389056099 Inf

Floor x

   Argument and Result
The argument and result are simple numeric arrays. The result consists of nonfractional numbers, and is integer if all its elements can be represented that way (including if empty), else floating point.

   Dependency
Comparison tolerance, for most floating-point numbers (see "Comparison Tolerance").

   Definition
The largest nonfractional number less than x or tolerably equal to x, except that x is 0 when x is less than zero but is equal to or greater than 1e-13 (intolerantly).

   Example
     10 10.2 10.5 10.98 9 9.2 9.5 9.98, 10-1e-13
 10 10 10 10 9 10 10 10 10

Identity +x

   Argument and Result
The argument, which is also the result, can be any array. (A type error cannot occur.)

   Definition
The result is identical to x.

   Example
     +'abc'
abc

Natural log x

   Argument and Result
The argument and result are simple numeric arrays. The elements of the argument must be nonnegative. The result is always floating point.

   Definition
The natural logarithm of x, i.e., the logarithm of x to the base e (2.71828...).

   Example
      1 10 100 0
0 2.302585093 4.605170186 Inf

Negate -x

   Argument and Result
The argument and result are simple numeric arrays. The result for an integer argument is integer if possible.

   Definition
0-x.

   Example
     -23 2 45 0 1 .5
23 2 45 0 1 0.5

Not ~x

   Argument and Result
The argument is a simple array of restricted whole numbers. The result is always of integer type.

   Definition
The value is 1 if |x is almost 0, viz., less than 1e-13 (intolerantly), and 0 otherwise.

   Examples
     ~0 1
 1 0
     ~1 0 1 2 3
 0 1 0 0 0

Pi times x

   Argument and Result
The argument and result are simple numeric arrays. The result is always floating point.

   Definition
Pi (3.14159...) times x. The result is Inf or Inf if it cannot be represented otherwise.

   Example
     1 2 .5 1e308
 3.141592654 6.283185307 1.570796327 Inf

Reciprocal x

   Argument and Result
The argument and result are simple numeric arrays. The type of the result is always floating point.

   Definition
1x. The result is Inf or Inf for elements that cannot be represented otherwise; in particular, the result is Inf for 0.

   Example
     .5 1.5 2 100 0 1e-309
 2 0.6666666667 0.5 0.01 Inf Inf

Roll ?x

   Argument and Result
The argument and result are simple arrays of restricted whole numbers. The result is always integer.

   Dependency
The value of the Random Link system variable, `rl, which is changed each time a random number is chosen.

   Definition
x is an array of positive restricted whole numbers, and the value is an array of integers with the same shape as x. Each element of the result is a random integer chosen from e, where e is the corresponding element of x. The result is dependent on the random link, `rl, which is set when the Random Link system command, $rl, is executed and each time a random integer is chosen.

   Example
     ?2010
 3 4 7 2 1 5 0 1 7 0 7 9 9 6 9 3 9 0 0 6
     ?2010
 2 9 2 4 5 1 3 5 8 3 0 3 7 8 6 9 5 8 0 4

Sign x

   Argument and Result
The argument and result are simple numeric arrays. The type of the result is always integer.

   Definition
Signum x. The value of x is -1 for negative elements, 0 for zero, and 1 for positive elements.

   Example
     100 2.5 0 5 Inf
1 1 0 1 1


doc@aplusdev.org© Copyright 1995–2008 Morgan Stanley Dean Witter & Co. All rights reserved.